707 research outputs found

    Crown plasticity enables trees to optimize canopy packing in mixed-species forests

    Get PDF
    It has been suggested that diverse forests utilize canopy space more efficiently than species‐poor ones, as mixing species with complementary architectural and physiological traits allows trees to pack more densely. However, whether positive canopy packing–diversity relationships are a general feature of forests remains unclear. Using crown allometric data collected for 12 939 trees from permanent forest plots across Europe, we test (i) whether diversity promotes canopy packing across forest types and (ii) whether increased canopy packing occurs primarily through vertical stratification of tree crowns or as a result of intraspecific plasticity in crown morphology. We found that canopy packing efficiency increased markedly in response to species richness across a range of forest types and species combinations. Positive canopy packing–diversity relationships were primarily driven by the fact that trees growing in mixture had sizably larger crowns (38% on average) than those in monoculture. The ability of trees to plastically adapt the shape and size of their crowns in response to changes in local competitive environment is critical in allowing mixed‐species forests to optimize the use of canopy space. By promoting the development of denser and more structurally complex canopies, species mixing can strongly impact nutrient cycling and storage in forest ecosystems.The research leading to these results received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 265171.This is the accepted manuscript. The final version is available at http://onlinelibrary.wiley.com/doi/10.1111/1365-2435.12428/abstract

    Power requirements for electron cyclotron current drive and ion cyclotron resonance heating for sawtooth control in ITER

    Full text link
    13MW of electron cyclotron current drive (ECCD) power deposited inside the q = 1 surface is likely to reduce the sawtooth period in ITER baseline scenario below the level empirically predicted to trigger neo-classical tearing modes (NTMs). However, since the ECCD control scheme is solely predicated upon changing the local magnetic shear, it is prudent to plan to use a complementary scheme which directly decreases the potential energy of the kink mode in order to reduce the sawtooth period. In the event that the natural sawtooth period is longer than expected, due to enhanced alpha particle stabilisation for instance, this ancillary sawtooth control can be provided from > 10MW of ion cyclotron resonance heating (ICRH) power with a resonance just inside the q = 1 surface. Both ECCD and ICRH control schemes would benefit greatly from active feedback of the deposition with respect to the rational surface. If the q = 1 surface can be maintained closer to the magnetic axis, the efficacy of ECCD and ICRH schemes significantly increases, the negative effect on the fusion gain is reduced, and off-axis negative-ion neutral beam injection (NNBI) can also be considered for sawtooth control. Consequently, schemes to reduce the q = 1 radius are highly desirable, such as early heating to delay the current penetration and, of course, active sawtooth destabilisation to mediate small frequent sawteeth and retain a small q = 1 radius.Comment: 29 pages, 16 figure

    Strength in numbers:combining multi-source remotely sensed data to model plant invasions in coastal dune ecosystems

    Get PDF
    International audienceA common feature of most theories of invasion ecology is that the extent and intensity of invasions is driven by a combination of drivers, which can be grouped into three main factors propagule pressure (P), abiotic drivers (A) and biotic interactions (B). However, teasing apart the relative contribution of P, A and B on Invasive Alien Species (IAS) distributions is typically hampered by a lack of data. We focused on Mediterranean coastal dunes as a model system to test the ability of a combination of multi-source Remote Sensing (RS) data to characterize the distribution of five IAS. Using generalized linear models, we explored and ranked correlates of P, A and B derived from high-resolution optical imagery and three-dimensional (3D) topographic models obtained from LiDAR, along two coastal systems in Central Italy (Lazio and Molise Regions). Predictors from all three factors contributed significantly to explaining the presence of IAS, but their relative importance varied among the two Regions, supporting previous studies suggesting that invasion is a context-dependent process. The use of RS data allowed us to characterize the distribution of IAS across broad, regional scales and to identify coastal sectors that are most likely to be invaded in the future. © 2019 by the authors

    Reconciling the contribution of environmental and stochastic structuring of tropical forest diversity through the lens of imaging spectroscopy.

    Get PDF
    Both niche and stochastic dispersal processes structure the extraordinary diversity of tropical plants, but determining their relative contributions has proven challenging. We address this question using airborne imaging spectroscopy to estimate canopy ÎČ-diversity for an extensive region of a Bornean rainforest and challenge these data with models incorporating niches and dispersal. We show that remotely sensed and field-derived estimates of pairwise dissimilarity in community composition are closely matched, proving the applicability of imaging spectroscopy to provide ÎČ-diversity data for entire landscapes of over 1000 ha containing contrasting forest types. Our model reproduces the empirical data well and shows that the ecological processes maintaining tropical forest diversity are scale dependent. Patterns of ÎČ-diversity are shaped by stochastic dispersal processes acting locally whilst environmental processes act over a wider range of scales

    Effect of membrane character and solution chemistry on microfiltration performance

    Get PDF
    To help understand and predict the role of natural organic matter (NOM) in the fouling of low-pressure membranes, experiments were carried out with an apparatus that incorporates automatic backwashing and long filtration runs. Three hollow fibre membranes of varying character were included in the study, and the filtration of two different surface waters was compared. The hydrophilic membrane had greater flux recovery after backwashing than the hydrophobic membranes, but the efficiency of backwashing decreased at extended filtration times. NOM concentration of these waters (7.9 and 9.1 mg/L) had little effect on the flux of the membranes at extended filtration times, as backwashing of the membrane restored the flux to similar values regardless of the NOM concentration. The solution pH also had little effect at extended filtration times. The backwashing efficiency of the hydrophilic membrane was dramatically different for the two waters, and the presence of colloid NOM alone could not explain these differences. It is proposed that colloidal NOM forms a filter cake on the surface of the membranes and that small molecular weight organics that have an adsorption peak at 220 nm but not 254 nm were responsible for “gluing” the colloids to the membrane surface. Alum coagulation improved membrane performance in all instances, and this was suggested to be because coagulation reduced the concentration of “glue” that holds the organic colloids to the membrane surface
    • 

    corecore